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Quasi-Kernel Polynomials and Convergence Results

for Quasi-Minimal Residual Iterations

Roland W. FYeund

Abstract. Recently, Freund and Nachtigal [9] have proposed a novel polynomi-
al-based iteration, the quasi-minimal residual algorithm (QMR), for solving gen-
eral nonsingular non-Hermitian linear systems. Motivated by the QMR method,
in [6] we have introduced the general concept of quasi-kernel polynomials, and
we have shown that the QMR algorithm is based on a particular instance of
quasi-kernel polynomials. In this paper, we continue our study of quasi-kernel
polynomials. In particular, we derive bounds for the norms of quasi-kernel poly-
nomials. These results are then applied to obtain convergence theorems both
for the QMR method and for a transpose-free variant of QMR, the TFQMR
algorithm.

§1. Introduction

Many iterative algorithms for solving large nonsingular systems of linear equa-
tions

Ax =b (1)

are based on polynomials. For example, the classical conjugate gradient algo-

rithm [13] for Hermitian positive definite matrices A and its various extensions

to non-Hermitian linear systems all fall into the category of polynomial-based

methods. For a survey of iterative methods, we refer the reader to [7] and the

references given there.

Typically, polynomial-based algorithms with optimal convergence prop-

erties correspond to polynomials that are characterized as solutions of con-

strained least squares approximation problems of the form

min (¢, ¢). (2)

Here and in the sequel, we use the notation

7,, := - + +... + ] e c} (3)

for the set of all complex polynomials of degree at most n. Moreover, (., .) in

(2) is an inner product that is positive definite on 7),. The exact solutions of

problems of the form (2) are normalized kernel polynomials, and they can be

expressed in terms of the orthogonal polynomials associated with the inner

product (.,-).

For the special case of Hermitian matrices A, only inner products on

the real line arise, and then the corresponding kernel and orthogonal poly-

nomials satisfy three-term recurrences. As a result, optimal polynomial-based
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algorithms for Hermitian linear systems can be implemented using only three-

term vector recursions. The situation is less satisfactory for the case of general

non-Hermitian matrices A. Here, inner products in the complex plane arise,

and the corresponding complex kernel and orthogonal polynomials no longer

satisfy short recurrences. Consequently, optimal polynomial-based methods

for non-Hermitian linear systems in general involve long vector recurrences.

Usually, it is too expensive to run the full versions of these optimal algorithms.

Instead, restarted or truncated variants are used, which often leads to rather

slow convergence.

Recently, Freund and Nachtigal [9] proposed the quasi-minimal residual

algorithm (QMR) for solving general nonsingular non-Hermitian linear sys-

tems (1). The QMR method produces approximate solutions of (1) that are

characterized by a quasi-optimality condition, namely a quasi-minimization

of the residual norm. The point is that the QMR algorithm--unlike optimal

polynomial-based iteration schemes--can be implemented using only short
vector recurrences.

Motivated by the QMR method, in [6] we have introduced the general

concept of quasi-kernel polynomials, and we have shown that the QMR algo-

rithm is based on a particular instance of quasi-kernel polynomials. Moreover,

in [6] some general theory for quasi-kernel polynomials was given, such as re-

currence relations and a characterization of roots of quasi-kernel polynomials

as generalized eigenvalues.

In this paper, we continue our study of quasi-kernel polynomials. In par-

ticular, we derive bounds for the norms of quasi-kernel polynomials. These

results are then applied to obtain convergence theorems both for the orig-

inal QMR method and for a transpose-free variant of QMR, the TFQMR

algorithm [5].

The remainder of the paper is organized as follows. In §2 we briefly re-

ca_ the definition of quasi-kernel polynomials. In §3 we present bounds for

the norms of quasi-kernel polynomials. We then turn to non-I-Iermitian linear

systems (1), and in §4 we describe the general setting of polynomial-based

methods for the iterative solution of such systems. Finally, in §5 and §6 we

consider the QMR and TFQMR algorithms, respectively, and we give conver-

gence results for both methods.

Throughout the paper, all vectors and matrices are allowed to have real or

complex entries. As usual, M T = [rntj] and M H = [_--_] denote the trans-

pose and the conjugate transpose, respectively, of the matrix M = [mjk ]. We

use the notation amax(M) and amin(M) for the largest and smallest singu-

lax value, respectively, of the matrix M. The vector norm Ilxll2= _ is

always the Euclidean norm, IIMII2= Om x(M) is the corresponding matrix

norm, and for nonsingular square matrices M, x2(M) = amax(M)/amin(M)

is the Euclidean condition number. Moreover, for square matrices M, we de-

note by $(M) the set of all eigenvalues of M. In addition to (3), we use the

notation Too for the set of all complex polynomials. The symbol 0 will be used

for the number zero, the zero matrix, and the polynomial ¢($) = 0; its actual

meaning and, in the case of the zero matrix, its dimension will be apparent
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from the context. Finally, I, denotes the n × n identity matrix.

§2. Quasi-Kernel Polynomials

We consider constrained approximation problems of the form (2), where (., .)

is assumed to be a given positive semidefinite inner product on 7:'_, i.e., for

all _01, _02, _o, ¢ E Poo and 71, ")'2 E C:

@,¢) =
@, _>0.

Notice that we do not require (_0, _0) > 0 for _ ¢ 0, i.e., (., .) is not assumed

to be positive definite. It will be convenient to rewrite (2) in the form

II¢ll. (4)
eE'Pn : g,(O)= 1

Here and in the sequel,

I1 11:= • vo ,

always denotes the seminorm induced by (., .).

If (., .) is positive definite on 7_,, then there always exists a unique optimal

solution ¢_ of (4). It is well known (see, e.g., [21, Chapter XVI], [1, Chapter

I], [20], or [6, Corollary 3.3]) that ¢_ is just the suitably normalized nth kernel

polynomiM associated with (-, .). Furthermore, ¢_ is given by

el(A) -- E_=o I_./(O)l 2 ' (5)

where _oj • Pj, j = O, 1,..., n, is any set of orthonormal polynomiMs with

respect to (-,-), i.e.,

S O, if j ¢ k,

/ 1, ifj = k.

In the following, we will refer to ¢_ as a true nth kernel polynomial.

Roughly speaking, quasi-kernel polynomials are approximations to true

kernel polynomials, which are obtained from a set of arbitrary basis polynomi-

als, rather than a set of orthonormal polynomials. More precisely, the setting

is as follows. Let IIj :- {_/}J=0, where J can either be a finite integer or

equal to c¢), be a given set of polynomials

_oj • :Pj with deg_oj = j, (6)

which span Ps. We note that, by (6), each polynomial _Tj-a, 1 < j _< J, has

a unique representation of the form

where hj+l,j ¢ O. (7)

k----0



4 Roland W. Freund

In the sequel, we always assume that n E {1,2,..., J}, if J is finite, respec-

tively n _ {1,2,...}, if J = oo. Moreover, we denote by

Hn

" hll hi2 "'" hi,,

h21 "'.

.•. ".. *

• "'" hn,n-1 hnn

0 "'" 0 hn+l,n

(8)

n--1

¢,(A) = 1 - A _ (/+a_(,X),

j=O

where z :=

In [6] we have shown that each polynomial (9) satisfies

Here

is the Gram matrix of _o0,Th,... ,_n, and

d, := [1/7_0 0 --. 0] T E C ''+'. (12)

Note that, by (6), _0 is a nonzero constant.

The estimate (10) is the basis for the definition of quasi-kernel polyno-

mials. We choose the parameter vector z in (9) such that, instead of [[¢,,[[,

only the second factor in the upper bound in (10) is minimal. This leads to

the following definition.

Definition 1. [6, Definition 3.1]• Let z,, E C" be the solution of the least

squares problem

[[d.- H.z.[[2 = min [[d.- H.z[[2. (13)
zeC"

The polynomial ¢, given by (9) (with z := z,) is called the nth quasi-kernel

polynomial (corresponding to the inner product (., .) and derived from H j).

Recall that H,, is an unreduced (n + 1) x n Hessenberg matrix, and thus

it has full rank n. This guarantees that (13) always has a unique solution z,,.

I1¢.11= ((d. - Hnz)HGn(d. - Hnz))1/2

< (IIG.II2)'/2 lid. - H.zll2.

v. := ,.

cc". (9)

(10)

(II)

the (n + 1) x n upper Hessenberg matrix, which contains the recurrence coef-

ficients hk+lj from (7) as entries. We remark that, in view of (7), all subdi-

agonal elements hj+l,j in (8) are different from zero, i.e., H, is an unreduced

upper Hessenberg matrix.

It follows from (6) that any polynomial ¢,, • _,., with ¢,(0) = 1 can be

parametrized in the form
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In [6] we have established some general theory for quasi-kernel polynomi-

als, such as recurrence relations and a characterization of roots of quasi-kernel

polynomials as generalized eigenvalues. For example, in [6, Theorem 3.2], it is

shown that Cn satisfies the same relation (5) as true kernel polynomials, where

the _j's are now the given basis polynomials (6). In particular, if the polyno-

mials in IIj are orthonormal, then the quasi-kernel polynomial ¢, coincides

with the true kernel polynomial.

§3. Bounds for the Norms of Quasi-Kernel Polynomials

In this section, we present some bounds for the norm I1¢-]1 of the nth quasi-

kernel polynomial Cn.

First, note that, from (10) and (13), one obtains the estimates

min
_bE'Pn : t#(O)= 1

II¢ll< II¢.ll

< (IIG.II2) '/2 min lid.- n.zll2.
- zEC"

(14)

For later use, we remark that the first factor of the upper bound in (14)

satisfies the inequality

(lla.l12)'/2 < v"-_+1 max II,PJll,
j=O,...,n

(15)

which follows from

IIG.II2= max ynG.y
vEC"+i: Ily112=1

and the Cauchy-Schwarz inequality.

Clearly, the Gram matrix G,, defined in (11) is positive definite if the

inner product (., .) is positive definite on 79,. In this case, the condition number

_2(G,) of G, is a measure for how far I1¢,*[[ can be from the minimal value

II¢.KIIof (4).

Theorem 2. Assume that the inner product (., .) is positive definite on 79,,

and let ¢_ be the true nth kernel polynomial Then:

I1¢_11-<I1¢.11-<(,_(a,,)) '/2 I1¢_11. (16)

In particular, ¢,, = ¢_ if G, = I,.

Proof: The polynomial ¢[ is the optimal solution of the approximation prob-

lem on the left-hand side of (14). This implies the first inequality in (16).

Let C g be represented in the form (9), and let z_ E C" be the corre-

sponding parameter vector. Using the first relation in (10), it follows that

II¢.K II = ((d. - g.z[)HG.(d. - gnzKn)) 1/2
(17)

> (amin(an)) 1/2 lid. K_ - H.z. Ill.
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On the other hand, from (14), we have

I1¢.11< ("m_,-(a-))'/2 rain lid. - g.zll2
- z_C" (18)

_<(am,.,(a.)) ,/2 lid. - H.z.KII2.

Finally, by combining the estimates (17) and (18), we obtain the second in-

equality in (16)• •

Next, we show that the upper bound in (14) can be related to certain

constrained approximation problems• This result will be used in §5 and §6 to

derive convergence theorems for QMR and TFQMR, respectively•

We use the following setting. Let rn < J be an arbitrary, but fixed integer.

We denote by A1, _2,.. •, ,_t E C the distinct zeros of the mth basis polynomial

_0n, and pj is the multiplicity of ,_j. Note that

!

_n(_) - _ 1-I(_ - _j)"J forsome _ e C, _ ¢ 0.
j=l

Furthermore, we denote by

H:=[In 0]Hn (19)

the m x rn matrix obtained by deleting the last row of the ruth Hessenberg

matrix Hn in (8). Using (7) and (19), one easily verifies the identity

_¢()_)-¢()_)H +[0 ..- 0 h,,+,,,,_0m(_)], (20)

where ¢(_) is a row vector defined by

¢(_):=[_0(_) ... _n-l(_)].

By setting _ = _1 in (20), we deduce that the zeros of _0m are just the

eigenvalues of H, i.e.,

{_1,_,2,...,_,} = _(H), (21)

and each )_j is an eigenvalue of algebraic multiplicity #j. Next, we recall that

Hn (and thus H) is an unreduced upper Hessenberg matrix• This implies that,

for each Aj, the matrix H - AjIm has rank m - 1, and hence the eigenspace

corresponding to AJ is of dimension 1. As a result, there is exactly one Jordan

block for each eigenvalue of H. Therefore, H has the Jordan canonical form

J = SHS -_, (22)

where S is a nonsingular rn × m matrix and

J = diag(J()_l), J(_2),..., J(_,)) (23)

is a block diagonal matrix with Jordan blocks

"0 1 0

0

S(Xj)'- XjI_, i + g i, g i := " ••.

1 °.

"- 0

°

0 E _pi x_,_

1

.0 ......... 0.

After these preliminaries, our result can now be stated as follows•

(24)
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Theorem 3. Let m <_ J be a fixed integer, and let H be the m x m matrix

deigned by (19) with spectrum (21). Let J = SHS -1 be the Jordan normal

form (22), (23), with Jordan blocks (24). Then, for n = 1,2,..., m - 1, the

nth quasi-kernel polynomial ¢, satisfies

where

IIO,II < _,(s) (25)I¢ol (lla"ll_)l/= ¢"'

e. := min max II¢(Y(n_))ll2. (26)
¢Er.:¢(0)=1 j=l .... ,t

Moreover, ff H is diagonalizable, then:

¢,= min max I¢(A)I. (27)
¢e7,.:¢(o)=] XeX(H)

Proof: Let n • {1, 2,..., m - 1}. By using (12) and by setting u := q_0z, we

obtain from (14) the estimate

where

1 )1/2
I1¢.11-< _ (lla.ll= o., (28)

0n := rain I1_"+')-H.ull=, e_"+') := [1 o ... o]T • ]R"+a. (29)
.eC"

In view of (19), H. is the (n + 1) x n leading submatrix of H, i.e.,

0 '

and we have the relation

Next, using the fact that /-/ is an unreduced upper Hessenberg matrix, we

deduce that

By means of (30) and (31), the quantity 0. in (29) can be rewritten in the
form

0. = rain JJe_m) - ¢(tt)e_m)JJ2 = rain I1¢(H)_")112. (32)
4,6_. -, eel.: ,/,(0)=1

With (22)-(24) and since Ile_m)ll2-- 1, it follows that, for all _ 6 7_,

II¢(H)e_m)ll2< '_2(S) 11¢(J)112- _2(S) max II¢(Y(A,))II2. (33)
-- j=l,...,I
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By combining (28), (32), and (33), we obtain the desired estimate (25), (26).

Finally, if H is diagonalizable, then all Jordan blocks J(Aj) = [A j] are

of size 1, and (26) reduces to (27). •

We remark that the norms in (26) can be estimated by means of the

inequality

m-1 1

H¢(J(AJ))H2 -< Z _ ]¢(O(AJ)[ ' ¢ E 7:'_, (34)
i_-O

which is an immediate consequence of the standard relation

_J --1

=
i----O

Here Nj is the nilpotent matrix defined in (24), and ¢(i) denotes the ith

derivative of ¢.

§4. Polynomial-Based Matrix Iterations

We now return to systems of linear equations (1). From now on, it is always

assumed that A in (1) is a nonsingular non-Hermitian N × N matrix.

Many iterative algorithms for solving linear systems (1) are polynomial

based methods: they produce approximations x. to A -1 b of the form

x,, = x0 + ¢,,(A)r0 with ¢. E _n--1) _2 ---- 1,2, .... (35)

Here x0 E C N is any initial guess for the solution of (1), and r0 := b - Axo.

We remark that the residual vector rn := b- Ax. corresponding to the nth

iterate (35) of any polynomial-based algorithm is given by

rn = ¢.(A)r0, where Cn(A) - 1 - A¢.(A). (36)

Note that

¢. • :P. and ¢.(0) = 1. (37)

Generally, any Cn that satisfies (37) is called an nth residuM polynomiM.

The goal in designing a polynomial-based method is to choose at each

step the residual polynomial ¢,_ in (36) such that some norm of r,, is as small

as possible. A standard approach [18] is to require that the Euclidean norm

of r. is minimal, i.e.,

Hr,,H2 = min []¢(A)r0 H2. (38)
q,O'.: _(o)=1

By setting

(_0,¢) := roH(V(A))H_o(A)ro and Hell := (¢,¢)1/2, (39)
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we see that (38) is an instance of a constrained polynomial approximation

problem of the form (4). We remark that other strategies (see [17,19]) for

choosing the residual polynomial ¢,, in (36) also lead to problems of the form

(4), e.g., with inner products given by

(_o,¢) :=//a_o(A)¢(A)w(_)da or (_0,_,):-/c_o(A)¢(A)w(A)ldAl.

Typically, G C C is a compact set containing the spectrum A(A) of A or some

approximation to A(A), and C is a curve bounding such a set G.

In the remainder of this paper, we always assume that (., .) is the inner

product defined by (39). Note that the corresponding polynomial norm [[.[[ is

equivalent to the Euclidean vector norm in C N, in the sense that

I1¢11- 11 112for all , = ¢(A)r0 with ¢ E T_oo. (40)

Finally, we call a polynomial-based method optimal if its residual vectors sat-

isfy (38). We recall (see, e.g., [6]) that an optimal iteration scheme terminates

after a finite number Jopt(< N) of steps with the exact solution Xjop, = A-lb

of (1). Furthermore, the residual vectors 7,-°Pt of an optimal polynomial-based

method are unique, and they are given by

ropt
,, =¢_(A)r0, n=l,2,...,Apt,

where ¢_ is the nth true kernel polynomial associated with (.,-).

(41)

§5. Convergence Results for the QMR Algorithm

Faber and Manteuffel [2] have shown that---except for a very special class

of non-Hermitian matrices---optimal polynomial-based methods for general

non-Hermitian linear systems can be implemented only with long recurrences,

which involve vectors from all previous iterations. Their result motivated the

development of a quasi-optimal polynomial-based iteration scheme, the QMR

algorithm [9], which can be implemented using only short vector recurrences.

In this section, we apply the results from §3 to obtain two convergence theo-

rems for the QMR algorithm.

The QMR iteration uses the Lanczos process [14] with look-ahead [16,8]

to generate basis vectors of the form

vi=¢j(A)ro, j=O, 1,...,JL. (42)

Here

CJePi with deg¢i=j, J=0,1,---,JL, (43)

are the so-called Lanczos polynomials, and JL is the termination index of

the look-ahead Lanczos algorithm. We note that JL _ Jopt. For a detailed

description of the Lanczos process, we refer the reader to [8] and the references

given there.
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In [6] we have shown that the QMR algorithm is based on quasi-kernel

polynomials. More precisely, the QMR residual vectors are given by

rQMR = cn(a)r0, n = 1,2, J, (44)n "'*'

where J :-- JL, and Cn is the nth quasi-kernel polynomial corresponding to

the inner product (39) and derived from the normalized Lanczos polynomials

{*'_o1 = [lCJl]' j = 0,1,...,JL -- 1, (45)

CJL, j = JL.

For later use, we remark that the condition number of the Gram matrix Gn

associated with the basis polynomials (45) can be expressed in terms of the

extreme singular values of the matrix of normalized Lanczos vectors

[ VO Vl ... Vn ]y. :--

More precisely, for n = 0, 1,..., JL -- 1, we have

(x2(Gn))]/2 = amax(Vn) (46)
O'min (Vn) "

The relation (46) is an immediate consequence of the identity

yHG,,u = IlV.yll_, u e c "+a,

which follows with (11), (39), (42), (45), and (40).

Next, we apply Theorem 2, and we rewrite, by means of (40) and (46),

the bounds in (16) in terms of the residual vectors (41) and (44). This gives

the following result.

Theorem 4. For n = 1, 2,..., JL - 1, the QMR residual vectors satisfy

_m.x(V.)
IIrXP'II' -< IIr"QMrtll2-< _mi.(v.)II_°"P'II" (47)

In particular, r_ Mrt = ' n-°Ptif the columns of Vn are orthonormal.

We remark that a different proof for (47), without using quasi-kernel

polynomials, was given by Nachtigal [15, Section 4.3].

Next, we derive upper bounds for [Ir.OMRII_by applying Theorem 3 (with

m = JL) for the special case of the QMR quasi-kernel polynomials.

In the sequel, the same notation as in §3 is used. We set m := JL, and let

H:=[Ij L 0]Hj L (48)
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be the Hessenberg matrix of recurrence coefficients for the basis polynomials

(45). As before, we denote by A1, A2,. • •, At the distinct zeros Of_m. We remark

that, by (45), the polynomial _m = CJL is just the last Lanezos polynomial.

It is well known (see [16,12]) that each zero of CJL is alSO an eigenvalue of A.

Therefore, together with (21), we have

{A1,A2,...,AI} = A(H) C_ A(A). (49)

Furthermore, we will need the relation

I_0l = 1/llr0ll2, (50)

which follows from (45) (with j=0) and (40), and the inequality

(IIG,II2)'/2 < + 1, . = 1,2,...,m- 1, (51)

which follows from (15) and (45).

Finally, by applying Theorem 3, we obtain the following convergence

result for the QMR algorithm.

Theorem 5. Let H be the JL x JL matrix (48) corresponding to the nor-

realized Lanczos polynomials (45), and let (49) be the spectrum of H. Let

J = SHS -1 be the Jordan normal form (22), (23) of H, with Jordan blocks

(24). Then, for n - 1, 2,..., JL -- 1, the QMR residual vectors satisfy

II"#MRII2 --<II,'o11= vq + le., (52)

where

e. := min max II¢(J(:_;))ll=.
_,_7,.: _(0)=1 j=l,...,t

Moreover, if H is diagonalizable, then:

en < min max I¢(_)1- (53)
-- ,#0'.:¢(o)=I _e_(A)

Proof: The inequality (52) is obtained by rewriting (25) in terms of the QMR

residuals (44) instead of ¢,, and by using the relations (50) and (51). The

estimate (53) follows from (27) and (49). •

We remark that, for the special case of diagonalizable H, the bound (52),

(53) was first given by Freund and Nachtigal [9, Theorem 6.1].

Of course, the bound in (53) is not very practical since it would require

the knowledge of all eigenvalues of A. However, often one knows some compact

set G C C such that

A(A) cG and 0¢G.

In this case, we can replace (53) by the estimate

e. _< min (54)_bE?,, : 0(0)=1

The solutions of constrained polynomial approximation problems of the form

(54) are known explicitly for some "simple" sets, such as disks [22], certain

ellipses [3,4], and line segments [11].
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§6. A Convergence Result for the TFQMR Algorithm

The QMR algorithm involves matrix-vector multiplications with the coeffi-

cient matrix A, as well as its transpose A T. This is a disadvantage for certain

applications, where matrix-vector products A- v, but not A T. w, can be com-

puted efficiently without ever explicitly generating the matrix A. This was

the motivation for developing a transpose-free variant of the standard QMR

method, the TFQMR algorithm [5,10], which involves matrix-vector prod-

ucts with A only. We remark that the QMR and TFQMR methods axe not

equivalent, and the two algorithms produce different sets of iterates.

In this section, we present a convergence result for the TFQMR algo-

rithm. It appears that this is the first convergence theorem for a transpose-free

Lanczos-based iterative method.

In [6] we have shown that--like the QMR algorithm--the TFQMR meth-

od is also based on quasi-kernel polynomials. Its residual vectors are given by

rTFQMR _ ¢,(A)r0, n = 1,2,. J,
n _ "" '

where J := 2JL and ¢, is the nth quasi-kernel polynomial corresponding

to the inner product (39) and derived from basis polynomials _0,_'1,... ,_s

that are now defined as squares or products of Lanczos polynomials (43). More

precisely, the basis polynomials are defined as follows:

I1¢ 11'
ek--l(_k

IICJL--ICJLII'

¢5L'

if j = 2k, k = O,1,...,JL -1,

ifj -- 2k- 1, k -- 1,2,...,JL -- 1,

if j = 2JL -- 1 and ]IeJL-IeJLII ¢ 0,

if j = 2JL -- 1 and IIeJL- ¢JLII= 0,

ifj = 2JL.

(55)

We remark that, as in the previous section, JL denotes the termination index

of the look-ahead Lanczos algorithm.

Again, we apply Theorem 3, but this time with m := 2JL. Let

H' := [ZJ,L O]Hj,L, (56)

where HJ2L now denotes the Hessenberg matrix (8) containing the recurrence

coefficients of the basis polynomials (55). Here, the notation H' is used to

distinguish the matrix (56) from the Hessenberg matrix (48) associated with

the QMR algorithm.

Recall from §3 that the eigenvalues of H' are just the distinct zeros of

the polynomial _m- Now, from (55) (with j - 2JL), we have that

_m -- ¢_/L (57)
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is the square of the last Lanczos polynomial. It follows that

=

where, as in §5, the A/'s denote the distinct zeros of CJL. Hence, in view of

(49), the eigenvalues of the TFQMR and QMR Hessenberg matrices H s and

H coincide, and we have

A(H s) = A(H) C_ A(A). (58)

However, their algebraic multiplicities are different. Indeed, by (57), each

eigenvalue Aj of H _ has even algebraic multiplicity 2#j, while Aj is an eigen-

value of H with algebraic multiplicity #j(> 1). In particular, the blocks in the

Jordan normal form (22), (23) of H' are now of the form

J(Ai) = AiI2_, j + gj, gj:_

0 1 0 ... 0

0 1 ".
• . • •

• "• "" 0

• , •

• ". 0 1

0 ......... 0

e IR2"_×2._ (59)

Finally, we note that, for the basis polynomials (55), the relations (50) and

(51) hold too.

Therefore, we can proceed as in the previous section, and by applying

Theorem 3, we obtain the following convergence result for the TFQMR algo-
rithm.

Theorem 6. Let H' be the 2JL x 2JL matrix (56) corresponding to the basis

polynomials (55). Then, the eigenvalues A1, A2,..., At of H' are the zeros of

the last Lanczos polynomial ¢ JL, and each Aj is an eigenvalue of even algebraic

multiplicity 2_j.

Let J = ,.qH'S -] be the Jordan normal form (22), (23), with Jordan

blocks (59)• Then, for n = 1,2,...,2JL - 1, the TFQMR residual vectors

satisfy

JJrTFQMR[]_ _< [Jr0][_ _2(S) v_ + I en,

where

e, := min max II'P(J(,Xi))II2- (60)
ce_v.:¢(0)=l i=1 .... ,i

Moreover, if all zeros of the last Lanczos polynomial C JL are simple, then:

¢,, < rain max (I¢(A)I + I¢(A)I).
- ¢,_7,,,,:¢(0)=i XCX(A)

(61)

We remark that the estimate (61) follows from (60) by using (58) and

inequality (34) (with p./replaced by 2).
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